On the **k**-Numbers of Some Generalized Kuratowski Operators in Topology

Ratna Dev Sarma¹, Ankit Gupta²

^{1,2}Department of Mathematics, Rajdhani College, University of Delhi, Delhi 110007, India

Abstract: If Xis a topological space and $A \subseteq X$, then the number of distinct setsthat can be obtained from A by using all possible compositions of pre-closure and complement is at most 10. Similarly, this number for c_{β} , c_{α} , and c_{σ} is 8,14 and 10 respectively. Explicit expressions for these sets are provided. An example is also provided where all these different sets are realized. A collection of all the semi groups (monoids) of the monoid generated by c_{α} , that is \mathcal{M}_{α} is provided.

2010 Mathematics Subject Classification: Primary 54A05.

Keywords and phrases: Closure operator, monoids, complement

operator.

Corresponding author: Ankit Gupta.

1. INTRODUCTION

The Kuratowski closure-complement Theorem [7], a result of basic point set topology, was first proposed and proved by Kazimierz Kuratowski. Since then a lot of research has been carried out on Kuratowski closure operators within and outside the realm of general topology [2,4,12].

In this paper, we investigate the same for some common generalized closure operators, namely, π -, σ -, α -, β -closures. It is found that the maximum number of distinct sets that can be obtained by repeatedly taking closure and complement on a set is 10, 10, 14 and 8 respectively in case of π -closure, σ -closure, α -closure, and β -closure respectively. It is also found that in all these four cases, the generalized Kuratowski operators obtained in the process give rise to a monoids under compositions relation. The generators of these monoids have been obtained and some semi groups contained in these monoids are studied in the paper.

We recall some known definitions:

Definition 1.1 Let (X, τ) be a topological space. Then a subset A of (X, τ) is called

i.) semi-open[8] if $A \subseteq cl$ int(A);

ii.) α -open [10] if $A \subseteq int \ cl \ int(A)$;

 $iii.)pre-open[9] if <math>A \subseteq int \ cl(A)$;

iv.) β -open[1] if $A \subseteq cl$ int cl(A).

The complement of a semi-open (resp. α -open, pre-open, β -open) set is known as semi-closed (resp. α -closed, pre-closed, β -closed) set.

Intersection of all the semi-closed (resp. pre-closed, α -closed and β -closed) sets containing the set A is called the semi-closure (resp. pre-closure, α -closure and β -closure) of A and denoted by $c_{\sigma}(A)$ (resp. $c_{\pi}(A)$, $c_{\alpha}(A)$ and $c_{\beta}(A)$).

Theorem 1.2[3]In a topological space (X, τ) with $A \subseteq X$, we have

i.) $c_{\pi}(A) = A \cup cl \ int \ (A);$ ii.) $c_{\beta}(A) = A \cup int \ cl \ int \ (A);$ iii.) $c_{\alpha}(A) = A \cup cl \ int \ cl \ (A);$ iv.) $c_{\sigma}(A) = A \cup int \ cl \ (A);$

2. k-NUMBERS OF GENERALIZED CLOSURE OPERATORS

In this section, first we define the *k*-number in a topology.

Definition 2.1 Let(X, τ) be a topological space. A set $A \subseteq X$ and c_j be a generalized closure operator on (X, τ) . Then the maximum number of distinct sets that can be generated from A by successive applications of c_j and the complement operator c_j is called the k-number of c_j and is denoted by $k(c_j)$.

Theorem 2.2Let c_j be a generalized closure operator in (X,τ) . Then we have $k(c_j) = 10,8,14$ and 10 for $j = \pi, \beta, \alpha$ and σ .

Proof. i.) The case of c_{π} :

For $A \subseteq X$, let us use the following notations:

$$\pi_0(A) = A \text{ (the identity)} \qquad \pi_4(A) = c. c_\pi(A)$$

$$\pi_1(A) = c(A) \qquad \pi_5(A) = c. c_\pi. c(A) \text{ (pre-interior)}$$

$$\pi_2(A) = c_\pi(A) \text{ (pre-closure)}$$

$$\pi_3(A) = c_\pi. c(A) \qquad \pi_7(A) = c. c_\pi. c. c_\pi(A)$$

$$\pi_8(A) = c_\pi. c. c_\pi. c(A) \qquad \pi_9(A) = c. c_\pi. c. c_\pi. c(A)$$

Here "." denotes the composition operation. For example, c_{π} . c(A) denotes the pre-closure of the complement of A.

We have

^{3&}lt;sup>rd</sup> International Conference on "Innovative Approach in Applied Physical, Mathematical/Statistical, Chemical Sciences and Emerging Energy Technology for Sustainable Development - ISBN: 978-93-83083-98-5

$$\pi_2(A) = A \cup cl \ int(A)$$

$$\pi_3(A) = c_{\pi} \cdot c(A) = c(A) \cup cl \ int \ (c(A))$$

$$= c(A) \cup cl \cdot c (int(A))$$

$$= c(A) \cup c (int \ cl(A)) = c(A \cap int \ cl(A))$$

Procedding similarly, we have

$$\pi_4(A) = c(A \cup cl \ int \ (A)), \ \pi_5(A) = A \cap int \ cl(A)$$

$$\pi_6(A) = c([A \cup cl \ int(A)] \cap int \ cl(A))$$

$$\pi_7(A) = [A \cup cl \ int(A)] \cap int \ cl(A)$$

$$\pi_8(A) = [A \cap int \ cl(A)] \cup cl \ int(A)$$

$$\pi_9(A) = c([A \cap int \ cl(A)] \cup cl \ int(A))$$

Based on the above expressions for $\pi_i(A)$, $i = 0,1, \dots, 9$, we obtain the following composition table for the operators $\pi_0(A)$, $\pi_1(A)$, $\pi_2(A)$, , $\pi_9(A)$:

0	π_0	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9
π_0	π_0	π_1	π_2	π_3	π_4	π_5	π_6	π_7	π_8	π_9
π_1	π_1	π_0	π_4	π_5	π_2	π_3	π_7	π_6	π_9	π_8
π_2	π_2	π_3	π_2	π_3	π_6	π_8	π_6	π_8	π_8	π_6
π_3	π_3	π_2	π_6	π_8	π_2	π_3	π_8	π_6	π_6	π_8
π_4	π_4	π_5	π_4	π_5	π_7	π_9	π_7	π_9	π_9	π_7
π_5	π_5	π_4	π_7	π_9	π_4	π_5	π_9	π_7	π_7	π_9
π_6	π_6	π_8	π_6	π_8	π_8	π_6	π_8	π_6	π_6	π_8
π_7	π_7	π_9	π_7	π_9	π_9	π_7	π_9	π_7	π_7	π_9
π_8	π_8	π_6	π_8	π_6	π_6	π_8	π_6	π_8	π_8	π_6
π_9	π_9	π_7	π_9	π_7	π_7	π_9	π_7	π_9	π_9	π_7

For the sake of convience, we just write π_i instead of $\pi_i(A)$. The readers may verify the above results for themselves. For example

$$\pi_4 \circ \pi_6(A) = c. c_{\pi}. c_{\pi}. c. c_{\pi}(A) = c. c_{\pi}. c. c_{\pi}(A) = \pi_7(A),$$

and so on.

From the above composition table, it is clear that $k(c_{\pi}) = 10$.

ii.) The Case of c_{β} :

For $A \subseteq X$, we use the following notations:

$$\beta_0(A) = A$$
 (the identity) $\beta_4(A) = c. c_\beta(A)$ $\beta_1(A) = c(A)$ $\beta_5(A) = c. c_\beta. c(A)$ (β -interior)

(the complement)

$$\beta_2(A) = c_\beta(A) \ (\beta\text{-closure})$$
 $\beta_6(A) = c_\beta. c. c_\beta(A)$ $\beta_3(A) = c_\beta. c(A)$ $\beta_7(A) = c. c_\beta. c. c_\beta(A)$

The set theoretic expressions for the above expressions are:

$$\beta_{3}(A) = c_{\beta}. c(A) = A \cup int \ cl \ int \ (c(A))$$

$$= A \cup int \ cl \ (c(cl(A)))$$

$$= A \cup int \ cl \ (int \ cl(A))$$

$$= A \cup c(cl \ int \ cl(A)) = c(A \cap cl \ int \ cl \ (A))$$
Proceeding similarly, we have
$$\beta_{4}(A) = c(A \cup int \ cl \ int \ (A)),$$

$$\beta_{5}(A) = A \cap cl \ int \ cl(A) \cup int \ cl \ int \ (A),$$

$$\beta_{6}(A) = c([A \cap cl \ int \ cl(A)] \cup int \ cl \ int \ (A),$$

$$\beta_{7}(A) = [A \cap cl \ int \ cl(A)] \cup int \ cl \ int \ (A).$$

The composition table of β_i , for i = 0, 1, 2, ..., 7 is the following:

o	eta_0	eta_1	β_2	β_3	eta_4	eta_5	eta_6	eta_7
eta_0	eta_0	eta_1	β_2	β_3	eta_4	eta_5	eta_6	eta_7
eta_1	eta_1	eta_0	eta_4	eta_5	eta_2	eta_3	β_7	eta_6
eta_2	eta_2	β_3	eta_2	β_3	eta_6	eta_7	β_6	eta_7
β_3	β_3	β_2	eta_6	β_7	β_2	β_3	β_7	eta_6
eta_4	eta_4	eta_5	eta_4	eta_5	β_7	eta_6	β_7	eta_6
eta_5	eta_5	eta_4	β_7	eta_6	eta_4	eta_5	β_6	eta_7
β_6	β_6	β_7	β_6	β_7	β_7	β_6	β_7	eta_6
β_7	β_7	eta_6	β_7	β_6	β_6	β_7	β_6	β_7

From the above table it follows that $k(c_{\beta}) = 8$.

iii.) The case of c_{α} and c_{σ} :

Proceeding as above, we can see that the number of distinct sets that can be obtained from c_{α} , c_{σ} and their complement are 14 and 10 respectively. For $A \subseteq X$, the notations for c_{α} are used:

$\alpha_0(A) = A$ (the identity)	$\alpha_7(A) = c_{\alpha}. c. c_{\alpha}. c(A)$
$\alpha_1(A) = c(A)$ (complement)	$\alpha_8(A) = c. c_\alpha. c. c_\alpha(A)$
$\alpha_2(A) = c_{\alpha}(A) \qquad (\alpha - \text{closure})$	$\alpha_9(A) = c. c_\alpha. c. c_\alpha. c(A)$
$\alpha_3(A) = c_{\alpha}.c(A)$	$\alpha_{10}(A) = c_{\alpha}.c.c_{\alpha}.c.(A)$

$\alpha_4(A) = c.c_\alpha(A)$	$\alpha_{11}(A) = c_{\alpha}. c. c_{\alpha}. c. c_{\alpha}. c(A)$
$\alpha_5(A) = c. c_{\alpha}. c(A)$ $(\alpha - interior)$	$\alpha_{12}(A) = c. c_{\alpha}. c. c_{\alpha}. c_{\alpha}(A)$
$\alpha_6(A) = c_{\alpha}.c.c_{\alpha}(A)$	$\alpha_{13}(A)$ = $c. c_{\alpha}. c. c_{\alpha}. c. c_{\alpha}. c(A)$

The composition table for c_{α} is :

0	α_0	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	α_{11}	α_{12}	α_{13}
α_0	α_0	α_1	α_2	α_3	α_4	α_5	α_6	α_7	α_8	α_9	α_{10}	α_{11}	α_{12}	α_{13}
α_1	α_1	α_0	α_4	α_5	α_2	α_3	α_8	α_9	α_6	α_7	α_{12}	α_{13}	α_{10}	α_{11}
α_2	α_2	α_3	α_2	α_3	α_6	α_7	α_6	α_7	α_{10}	α_{11}	α_{10}	α_{11}	α_6	α_7
α_3	α_3	α_2	α_6	α_7	α_2	α_3	α_{10}	α_{11}	α_6	α_7	α_6	α_7	α_{10}	α_{11}
α_4	α_4	α_5	α_4	α_5	α_8	α_9	α_8	α_9	α_{12}	α_{13}	α_{12}	α_{13}	α_8	α_9
α_5	α_5	α_4	α_8	α_9	α_4	α_5	α_{12}	α_{13}	α_8	α_9	α_8	α_9	α_{12}	α_{13}
α_6	α_6	α_7	α_6	α_7	α_{10}	α_{11}	α_{10}	α_{11}	α_6	α_7	α_6	α_7	α_{10}	α_{11}
α_7	α_7	α_6	α_{10}	α_{11}	α_6	α_7	α_6	α_7	α_{10}	α_{11}	α_{10}	α_{11}	α_6	α_7
α_8	α_8	α_9	α_8	α_9	α_{12}	α_{13}	α_{12}	α_{13}	α_8	α_9	α_8	α_9	α_{12}	α_{13}
α_9	α_9	α_8	α_{12}	α_{13}	α_8	α_9	α_6	α_9	α_{12}	α_{13}	α_{12}	α_{13}	α_8	α_9
α_{10}	α_{10}	α_{11}	α_{10}	α_{11}	α_6	α_7	α_{10}	α_7	α_{10}	α_{11}	α_{10}	α_{11}	α_6	α_7
α_{11}	α_{11}	α_{10}	α_6	α_7	α_{10}	α_{11}	α_9	α_{11}	α_6	α_7	α_6	α_7	α_{10}	α_{11}
α_{12}	α_{12}	α_{13}	α_{12}	α_{13}	α_8	α_9	α_8	α_9	α_{12}	α_{13}	α_{12}	α_{13}	α_8	α_9
α_{13}	α_{13}	α_{12}	α_8	α_9	α_{12}	α_{13}	α_{12}	α_{13}	α_8	α_9	α_8	α_9	α_{12}	α_{13}

From the above table it is clear that $k(c_{\alpha}) = 14$. In case of c_{α} , the notations used for different 10 sets are :

$$\begin{array}{lll} \sigma_{0}(A) = A & \sigma_{4}(A) = c.\,c_{\sigma}(A) & \sigma_{8}(A) \\ & = c_{\sigma}.\,c.\,c_{\sigma}.\,c(A) \\ \sigma_{1}(A) = c(A) & \sigma_{5}(A) = c.\,c_{\sigma}.\,c(A) & \sigma_{9}(A) \\ & = c.\,c_{\sigma}.\,c.\,c_{\sigma}.\,c(A) \\ & = c.\,c_{\sigma}.\,c.\,c_{\sigma}.\,c(A) \\ & = c_{\sigma}(A) & = c_{\sigma}.\,c.\,c_{\sigma}(A) \\ & \sigma_{3}(A) & \sigma_{7}(A) \\ & = c_{\sigma}.\,c(A) & = c.\,c_{\sigma}.\,c.\,c_{\sigma}(A) \end{array}$$

Like the above three cases, reader can verify that $k(c_{\sigma}) = 10$.

Below, we provide an example of a topological space for which all these bounds are realized. The elobrate details of the example is available in [6] and hence avoided here.

Example 2.3Let $X = \mathbb{R}$, the set of real numbers, equipped with the usual topology. Then a subset of $A \subseteq X$ be defined by:

$$A = \left\{ -\frac{1}{n}, n \in \mathbb{N} \right\} \cup \left[[1,3] \setminus \left\{ 2 + \frac{1}{n}, n \in \mathbb{N} \right\} \right] \cup \left[(5,7] \cap \left(\mathbb{Q} \cup \bigcup_{n=1 \text{ to } \infty} (6 + \frac{1}{2n\pi}, 6 + \frac{1}{(2n-1)\pi}] \right) \right] \cup (-3, -2]. \text{ For this set, all the sets defined above are different.}$$

If all the above four generalized closure operators and complement operator are taken together, they generate at the most 52distinct sets under composition of operators. The reader may refer to [6] for further discussion in this regard. Similarly, the sets which satisfy the property $A = i_{\sigma}c_{\sigma}(A)$ have been studiedn in [5] as *PS*-regular sets. In tour above discussion, a set is PS-regular if $A = \sigma_7(A)$.

3. MONOIDS OF THE GENERAIZED CLOSURE OPERATORS

Taking composition of operators as the binary operation, we obtain the following monoids of operators:

$$\begin{split} \mathcal{M}_{\pi} &= \{\pi_0, \pi_1, \dots, \pi_8, \pi_9\} \\ \mathcal{M}_{\alpha} &= \{\alpha_0, \alpha, \dots, \alpha_{12}, \alpha_{13}\} \\ \mathcal{M}_{\beta} &= \{\beta_0, \beta_1, \dots, \beta_6, \beta_7\} \\ \mathcal{M}_{\sigma} &= \{\sigma_0, \sigma_1, \dots, \sigma_8, \sigma_9\} \end{split}$$

This is clear from composition tables provided in the previous section.

Therorem 3.1The generators of the monoids \mathcal{M}_{δ} , where $\delta = \pi$, β , α and σ are given by

i.)
$$\mathcal{M}_{\delta} = \langle \delta_1, \delta_i \rangle$$
, where $i = 2,3,4,5$.

Proof. It follows from the fact that $\mathcal{M}_{\pi} = \langle \pi_1, \pi_2 \rangle$ and $\pi_2 = \pi_3 \circ \pi_1 = \pi_1 \circ \pi_4 = \pi_1 \circ \pi_5 \circ \pi_1$, to be verified from the composition table.

Same argument is valid for \mathcal{M}_{α} , \mathcal{M}_{β} and \mathcal{M}_{σ} .

Theorem 3.2The total number of distinct semi-groups generated by the members of \mathcal{M}_{α} is 118, under the composition of operators.

Proof. We enlist all the semi groups contained in \mathcal{M}_{α} in the following manner. Since the calculation part may be easily verified from the composition table, we leave it to the reader.

i.) Semi-groups with one generator and one element:

$$<\alpha_0>=\{\alpha_0\}, <\alpha_2>=\{\alpha_2\}, <\alpha_5>=\{\alpha_5\} \\ <\alpha_5>=\{\alpha_5\}, <\alpha_8>=\{\alpha_8\}, <\alpha_{10}>=\{\alpha_{10}\}, \\ <\alpha_{13}>=\{\alpha_{13}\}$$

ii.) Semi groups with one generator and two elements.

$$<\alpha_1>=\{\alpha_1,\alpha_0\},<\alpha_6>=\{\alpha_6,\alpha_{10}\},$$

$$<\alpha_{11}>=\{\alpha_{7},\alpha_{11}\},<\alpha_{9}>=\{\alpha_{9},\alpha_{13}\},$$

$$<\alpha_{12}>=\{\alpha_{8},\alpha_{12}\},<\alpha_{11}>=\{\alpha_{7},\alpha_{11}\}$$

iii.) Semi groups with one generator and more than two elements:

$$<\alpha_3>=\{\alpha_3,\alpha_7,\alpha_{11}\},<\alpha_4>=\{\alpha_4,\alpha_8,\alpha_{12}\}$$

iii.) Semi groups with one generator and more than two elements:

Now, we provide an exhaustive list of all semi groups with two generators consisting of element of \mathcal{M}_{α} .

It may be observed that

$$<\alpha_1,\alpha_2> \supseteq <\alpha_1,\alpha_6> \supseteq <\alpha_6,\alpha_9>$$

and
$$< \alpha_1, \alpha_2 > \supseteq < \alpha_3, \alpha_4 > \supseteq < \alpha_6, \alpha_9 >$$
.

Further $<\alpha_6,\alpha_9>$ has 9 semi groups each having two generators. They are:

$$<\alpha_{7},\alpha_{10}>=\{\alpha_{7},\alpha_{10}\}, <\alpha_{7},\alpha_{13}>=\{\alpha_{7},\alpha_{13}\}, \\ <\alpha_{8},\alpha_{10}>=\{\alpha_{8},\alpha_{10}\}, <\alpha_{8},\alpha_{13}>=\{\alpha_{8},\alpha_{13}\}, \\ <\alpha_{6},\alpha_{7}>=\{\alpha_{6},\alpha_{7},\alpha_{10},\alpha_{11}\}, \\ <\alpha_{8},\alpha_{9}>=\{\alpha_{8},\alpha_{9},\alpha_{12},\alpha_{13}\} \\ <\alpha_{6},\alpha_{8}>=\{\alpha_{6},\alpha_{8},\alpha_{10},\alpha_{12}\}, \\ <\alpha_{7},\alpha_{9}>=\{\alpha_{7},\alpha_{9},\alpha_{11},\alpha_{13}\}, \\ <\alpha_{7},\alpha_{8}>=\{\alpha_{7},\alpha_{8},\alpha_{10},\alpha_{13}\}$$

Again $< \alpha_6$, $\alpha_9 >$ contains 8 semi groups with one generator, namely, $< \alpha_6 >$, $< \alpha_7 >$, $< \alpha_8 >$, $< \alpha_9 >$, $< \alpha_{10} >$, $< \alpha_{11} >$, $< \alpha_{12} >$, $< \alpha_{13} >$, which are already mentioned in the beginning.

Thus total numbers of semi groups of $<\alpha_6,\alpha_9>$ are 9+8+1=18 (including itself).

Now, semi groups of $< \alpha_3, \alpha_4 >$, which are not listed above, with two generators are 27 in numbers. They are:

$$\langle \alpha_{2}, \alpha_{6} \rangle = \{\alpha_{2}, \alpha_{6}, \alpha_{10}\}, \langle \alpha_{2}, \alpha_{10} \rangle = \{\alpha_{2}, \alpha_{10}\}, \\ \langle \alpha_{5}, \alpha_{13} \rangle = \{\alpha_{5}, \alpha_{13}\}, \\ \langle \alpha_{5}, \alpha_{9} \rangle = \{\alpha_{5}, \alpha_{9}, \alpha_{13}\}, \\ \langle \alpha_{2}, \alpha_{7} \rangle = \{\alpha_{2}, \alpha_{7}, \alpha_{10}\}, \langle \alpha_{2}, \alpha_{8} \rangle = \{\alpha_{2}, \alpha_{8}, \alpha_{10}\}, \\ \langle \alpha_{2}, \alpha_{7} \rangle = \{\alpha_{2}, \alpha_{7}, \alpha_{10}\}, \langle \alpha_{2}, \alpha_{8} \rangle = \{\alpha_{2}, \alpha_{8}, \alpha_{10}\}, \\ \langle \alpha_{5}, \alpha_{7} \rangle = \{\alpha_{5}, \alpha_{7}, \alpha_{13}\}, \\ \langle \alpha_{5}, \alpha_{8} \rangle = \{\alpha_{5}, \alpha_{8}, \alpha_{13}\}, \\ \langle \alpha_{2}, \alpha_{11} \rangle = \{\alpha_{2}, \alpha_{6}, \alpha_{7}, \alpha_{10}, \alpha_{11}\}, \\ \langle \alpha_{2}, \alpha_{12} \rangle = \{\alpha_{2}, \alpha_{6}, \alpha_{8}, \alpha_{10}, \alpha_{12}\}, \\ \langle \alpha_{2}, \alpha_{13} \rangle = \{\alpha_{2}, \alpha_{6}, \alpha_{7}, \alpha_{8}, \alpha_{10}, \alpha_{13}\}, \\ \langle \alpha_{2}, \alpha_{9} \rangle = \{\alpha_{2}, \alpha_{6}, \alpha_{7}, \dots, \alpha_{12}, \alpha_{13}\}, \\ \langle \alpha_{5}, \alpha_{12} \rangle = \{\alpha_{5}, \alpha_{6}, \alpha_{7}, \alpha_{9}, \alpha_{11}, \alpha_{13}\}, \\ \langle \alpha_{5}, \alpha_{11} \rangle = \{\alpha_{5}, \alpha_{7}, \alpha_{9}, \alpha_{11}, \alpha_{13}\}, \\ \langle \alpha_{5}, \alpha_{10} \rangle = \{\alpha_{5}, \alpha_{7}, \alpha_{8}, \alpha_{10}, \alpha_{13}\}, \\ \langle \alpha_{5}, \alpha_{6} \rangle = \{\alpha_{5}, \alpha_{6}, \alpha_{7}, \dots, \alpha_{12}, \alpha_{13}\}, \\ \langle \alpha_{3}, \alpha_{6} \rangle = \{\alpha_{3}, \alpha_{6}, \alpha_{7}, \alpha_{10}, \alpha_{11}\},$$

$$\langle \alpha_{3}, \alpha_{9} \rangle = \{\alpha_{3}, \alpha_{7}, \alpha_{9}, \alpha_{11}, \alpha_{13}\}$$

$$\langle \alpha_{3}, \alpha_{8} \rangle = \{\alpha_{3}, \alpha_{6}, \alpha_{7}, \dots \dots \dots \alpha_{12}, \alpha_{13}\}$$

$$\langle \alpha_{4}, \alpha_{9} \rangle = \{\alpha_{4}, \alpha_{8}, \alpha_{9}, \alpha_{12}, \alpha_{13}\}$$

$$\langle \alpha_{4}, \alpha_{6} \rangle = \{\alpha_{4}, \alpha_{6}, \alpha_{8}, \alpha_{10}, \alpha_{12}\}$$

$$\langle \alpha_{4}, \alpha_{7} \rangle = \{\alpha_{4}, \alpha_{6}, \alpha_{7}, \dots, \alpha_{12}, \alpha_{13}\}$$

$$\langle \alpha_{2}, \alpha_{3} \rangle = \{\alpha_{2}, \alpha_{3}, \alpha_{6}, \alpha_{7}, \alpha_{10}, \alpha_{11}\}$$

$$\langle \alpha_{4}, \alpha_{5} \rangle = \{\alpha_{4}, \alpha_{5}, \alpha_{8}, \alpha_{9}, \alpha_{12}, \alpha_{13}\}$$

$$\langle \alpha_{2}, \alpha_{4} \rangle = \{\alpha_{2}, \alpha_{4}, \alpha_{6}, \alpha_{8}, \alpha_{10}, \alpha_{12}\}$$

$$\langle \alpha_{3}, \alpha_{5} \rangle \{\alpha_{3}, \alpha_{5}, \alpha_{7}, \alpha_{9}, \alpha_{11}, \alpha_{13}\}$$

$$\langle \alpha_{2}, \alpha_{5} \rangle = \{\alpha_{2}, \alpha_{5}, \alpha_{7}, \alpha_{8}, \alpha_{10}, \alpha_{13}\}$$

Similarly, we get 7 semi groups of $<\alpha_3,\alpha_4>$ having 3 generators. They are:

Thus, altogether, total number of distinct semi groups generated by the elements of \mathcal{M}_{α} without α_0 amounts to 57. One can check that it enumerates four monoids with α_0 and 57 semi groups without α_0 . The exhaustive list is provided below:

$$<\alpha_0>, <\alpha_1>, <\alpha_2>, <\alpha_3>, <\alpha_4>, <\alpha_5>, <\alpha_6>, \\ <\alpha_7>, <\alpha_8>, <\alpha_9>, <\alpha_{10}>, <\alpha_{11}>, <\alpha_{12}>, \\ <\alpha_{11}>, <\alpha_{11}>, <\alpha_{12}>, \\ <\alpha_{13}>, <\alpha_1, \alpha_2>, <\alpha_1, \alpha_6>, <\alpha_3, \alpha_4>, <\alpha_6, \alpha_9>, < \\ \alpha_7, \alpha_{10}>, <\alpha_7, \alpha_{13}>, \\ <\alpha_8, \alpha_{10}>, <\alpha_8, \alpha_{13}>, <\alpha_6, \alpha_7>, <\alpha_8, \alpha_9>, \\ <\alpha_6, \alpha_8>, <\alpha_7, \alpha_9>, <\alpha_7, \alpha_8>, <\alpha_2, \alpha_6>, <\alpha_2, \alpha_6>, <\alpha_2, \alpha_{10}\\ >, <\alpha_5, \alpha_{13}>, <\alpha_5, \alpha_9>, <\alpha_2, \alpha_7>, \\ <\alpha_2, \alpha_8>, <\alpha_5, \alpha_1>, <\alpha_5, \alpha_9>, <\alpha_2, \alpha_7>, \\ <\alpha_2, \alpha_8>, <\alpha_5, \alpha_7>, <\alpha_5, \alpha_8>, \\ <\alpha_2, \alpha_{11}>, <\alpha_2, \alpha_{12}>, <\alpha_5, \alpha_{11}>, \\ <\alpha_2, \alpha_9>, <\alpha_5, \alpha_{12}>, <\alpha_5, \alpha_{11}>, \\ <\alpha_5, \alpha_{10}>, <\alpha_5, \alpha_6>, <\alpha_3, \alpha_6>, \\ <\alpha_3, \alpha_9>, <\alpha_1, \alpha_2>, <\alpha_1, \alpha_6>, \\ <\alpha_3, \alpha_9>, <\alpha_1, \alpha_2>, <\alpha_1, \alpha_6>, \\ <\alpha_3, \alpha_9>, <\alpha_4, \alpha_6>, <\alpha_4, \alpha_7>, <\alpha_2, \alpha_3>, \\ <\alpha_4, \alpha_5>, <\alpha_2, \alpha_4, \alpha_7>, <\alpha_3, \alpha_5>, \\ <\alpha_2, \alpha_4, \alpha_7>, <\alpha_3, \alpha_5>, <\alpha_2, \alpha_4, \alpha_5>, <\alpha_2, \alpha_3, \alpha_5>, \\ <\alpha_2, \alpha_4, \alpha_7>, <\alpha_3, \alpha_5>, <\alpha_2, \alpha_4, \alpha_5>, <\alpha_2, \alpha_3, \alpha_5>, <\alpha$$

Since α_0 is an identity operator in monoid \mathcal{M}_{α} , therefore by adding α_0 to each of the semi group not containing α_0 , we again get a semi group of \mathcal{M}_{α} , therefore there are 4+57.2=118 semi groups in \mathcal{M}_{α} .

Similarly, the above study can be carried out for \mathcal{M}_{π} , \mathcal{M}_{β} and \mathcal{M}_{σ} also.

The reader may refer to [11] for similar algebraic treatment of Kuratowski operator.

ACKNOWLEDGEMENT

This work is a part of a research work financed by the University Grant Commission (India).

REFERENCES

- [1] Abd EI-Monsef, M. E., Mahmoud, R. A., and El-Deeb, S. N., " β -open sets and β -continuous mappings", *Bull. Fac. Sci. Assiut Univ.*, 12 (1966),pp. 77 90.
- [2] Brzozowski, J.,Grant, E.,Shallit, J., "Closures in formal languages and Kuratowski's theorem" Developments in language theory, 125–144, Lecture Notes in Comp. Sci., 5583,Springer, Berlin, 2009.
- [3] Császár, Á., "On γ-Interior and γ-Closure of a Set", *Acta Math. Hungar.*, 80 (1998), pp.89 93.
- [4] Gardner, B. J.; Jackson, M., "The Kuratowski closure-complement theorem", New Zealand J. Math. 38 (2008), 9–44.

- [5] Gupta, A., Sarma, R. D., "PS-Regular Sets in Topology and Generalized Topology", journal of Topology, 2014, Article Id 274592, 6 pages, 2014. Doi: 10.1155/2014/274592
- [6] Gupta, A., Sarma, R. D., "A Note on Some Generalized Closure and Interior Operators in Topology", Acta Math. Hungar., (Communicated)
- [7] Kuratowski, K., L'opération \bar{A} de l'analysis situs, Fund. Math. 3 (1922) 182-199.
- [8] Levine, N., "Semi-open Sets and Semi-Continuity in Topological Spaces", *The American Mathematical monthly*, 70 (1963), pp. 36 41.
- [9] Mashhour, A. S., Abd EI-Monsef, M. E., and El-Deeb, S. N., "On Pre continuous and Weak Precontinuous Mappings", Proc. Math. and Phys. Soc. Egypt, 51 (1981).
- [10] Njăstad, O., "On Some Classes of nearly Open Sets", *Pacific J. Math.*, 15 (1965),pp. 961–970.
- [11] Plewik, S., Walczyńska, M., "The monoid consisting ofKuratowski operations(English summary)" J. Math. 2013, Art. ID 289854,
- [12] Sherman, D., "Variations on Kuratowski's 14-set theorem", *Amer. Math. Monthly*117 (2010), no. 2, 113–123.