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Abstract—This paper investigates a Finite Time Continuous 
Terminal Sliding Mode control for Trajectory Tracking of robotic 
manipulators. Robustness and convergence results are presented for 
trajectory tracking control of 2dof and 3dof robotic manipulators in 
presence of nonliniarities, bounded uncertainties and unknown 
external disturbances. The effectiveness of the controller is evaluated 
in Matlab environment. From the results it is observed that fast 
convergence, highly precise tracking can be obtained by using the 
controller which is crucial for the robot handling and stability. It is 
established by applying the controller for trajectory tracking control 
of industrial robotic manipulator PUMA 560. The chattering problem 
is also fairly handled giving a smooth tracking trajectory. 
 
Index Terms: Finite time convergence; Robustness; erminal sliding 
mode control; PUMA 560 Robotic manipulator. 

1. INTRODUCTION 

In spite of the innumerable existing commercial robots, 
robotic manipulator motion control is still a field of rigorous 
study and research. The Robotic manipulators are usually 
used in the environments where human access is difficult, 
dangerous to health, and to handle materials without direct 
human contact. Typical industrial manipulator applications 
like welding, painting, pick and place, packaging, product 
inspection etc are accomplished with high precision and speed. 
Robotic manipulators are multiple input multiple out- put 
(MIMO) systems[9,10] with highly nonlinear dynamics. This 
makes the trajectory tracking control of robotic manip- ulators 
a challenging task. The system identication of robot is very 
difficult. As a result there are always uncertainties due to 
system dynamics which degrade the performance of the 
controller. In many applications robot manipulators are used 
in an unknown and unstructured environment. There- fore 
uncertainties due to modeling error, parametric variation and 
external disturbances are always present in practical robotic 
applications. Therefore design of nonlinear robust 
controllers[9,10] with strong mathematical tools is a prime 
requirement for trajectory tracking of robotic manipulator. The 
controller should guarantee asymptotic error convergence 

andstability in presence of such uncertainties Thus the 
trajectory control of robotic manipulator requires control 
schemes that take nonlinearities of the system, modeling 
uncertainties as well as external disturbances into 
account[10]. 

Sliding mode control(SMC)[2,8,9] is one of the most appro- 
priate approach for control of robotic manipulators. It has 
attracted signifcant amount of interest due to its fast global 
convergence, simplicity of implementation, order reduction, 
high robustness to external disturbances and insensitivity to 
model errors and system parameter variations.Control of 
robotic manipulators using sliding mode control has a rather 
long history. Numerous variations have been proposed in the 
literature[1,2,3,5,9]. 

In conventional sliding mode switching manifolds are 
usually linear hyper planes which guarantee asymptotic 
stability[2,8,9]. However for faster error convergence, the 
sliding mode controller parameters should be chosen such that 
the poles of the sliding mode dynamics are far from the origin 
on the left half of the s-plane. But this will cause increase of 
gain of the controller which may cause severe chattering on 
the sliding motion and thus deteriorates the system 
performance. To solve this problem of global asymptotic 
stability, terminal sliding mode control (TSMC) scheme has 
been developed [3,4,5] to achieve finite time stabilization. The 
TSM Controller was originated from the concept, terminal 
attractors[3]. The TSMC was first used in[6] for finite time 
sliding mode control design for robotic manipulators. It was 
then extended to different control problems of SISO and 
MIMO systems including robotics[3-7,11,12]. This paper 
examines the application of TSMC on trajectory tracking 
control of robotic manipulators. The outline of this paper is as 
follows. Section 2 explains the Finite Time Continuous 
Terminal Sliding Mode Controller. Section3 explains the 
Tracking Control of Robotic Manipula- tor using TSMC. 
Section4 explains the Simulation Example. Simulation is 
done for both 2dof as well as 3dof PUMA 560 
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manipulator. Conclusions are drawn in Section5.And 
APPENDIX A describes the dynamics of 2 dof manipulator. 
APPENDIX B presents the simulation results of 2 dof robotic 
manipulator and APPENDIX C presents the simulation results 
of PUMA 560 robotic manipulator. 

2. THE FINITE TIME CONTINUOUS TERMINAL 
SLIDING MODE CONTROLLER(TSMC)  

The TSMC as proposed by S.Yu, X.Yu, B.S. and Z. man 
[2005] [6] is discussed below. The following first-order 
nonlinear differential equations describe the TSM and Fast 
TSM as: 
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respectively, where , , 0,0 1z R       . 

The equilibrium point 0z   of the above equation (1) is 
globally finite-time stable, i.e., for any given initial condition 

(0) oz z
 , the system state converges to 0z   in finite 

time T as given below for TSM and FTSM 
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respectively and stays there forever, i.e. 0z   for t T  

An extended Lyapunov description of finite time stability can 
be given with the form of fast TSM as 

( ) ( ) ( ) 0,0 1V z V z V z      
  (3) 

and the settling time can be given by 
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Thus the above equations (3) and (4) mean exponential 
stability and faster finite-time stability. And the NTSM can be 
expressed as 

( ) 0z z sign z
    

   (5) 

Where 0   and 1 2  . Although the absolute value 

and signum operators are involved it is continuous and 
differentiable. Its first derivative can be expressed as 

1
z z z

      
    (6) 

3. TRACKING CONTROL OF ROBOTIC 
MANIPULATOR USING TERMINAL SLIDING 
MODE CONTROL (TSMC) 

Here The Fast Continuous Terminal Sliding Mode controller 
[6] is developed for trajectory tracking of robotic manipulators 
with the TSMC as discussed in section II. Precise trajectory 
tracking can be achieved with faster finite time convergence as 
compared to the conventional continuous sliding mode 
control. 

3.1 Controller design  

As we know the n link rigid robotic manipulator dynamics [ 
9,10] can be given as 

( ) ( , ) ( )M q q C q q q G q     
   (7) 

Where nq R  denotes the joint angle vector, q and q are 

the joint angular velocity and the joint angular acceleration 

respectively. And ( ) n nM q R   denotes the inertia matrix 

and ( , ) n nC q q R   denotes the centrifugal and Coriolis 

matrix. Also, ( ) nG q R  denotes the gravitational torque 

vector acting on the joints. The joint torque vector nR  is 

the control input to the system. 

And let 
n

dq R  be a twice differentiable desired trajectory, 

also define the tracking error as de q q  . The control 

objective is to determine a feedback control torque   such 

that the manipulator output q  tracks the desired trajectory dq
 

faithfully in finite time. 

The following notions are used for simplicity of expression in 
developing TSM (Haimo 1986)[17]: 
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Hence, the TSM can be defined as 
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The conventional TSM control can be designed as a 
discontinuous control law according to a discontinuous 
reaching law such as 

( )ksign  
    (10) 

where 1( ,........, )nk diag k k , 1,........,i n  and 

1( ) [ ( ),.........., ( )]T
nsign sign sign  

.  

A discontinuous TSM control can be designed as 

21 1

( , ) ( ) ( )

( ( ) )d

C q q q G q M q

ksign q e




    

  

 

 

 
   (11) 

Retaining the property of finite time reaching of TSM but 
eliminating discontinuities, [6] has proposed a Continuous 
Fast TSM type reaching law as  

1 2 ( )k k sig        (12) 

Where 1 11 1( ,........, )nk diag k k , 2 21 2( ,........, )nk diag k k , 

1 2 1, 0,0 ........ 1i i nk k        
. The inverse 

dynamics controller is designed as  
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This control law is continuous therefore is chattering free. And 
it does not involve any negative fractional power, hence it is 
also singularity [5,6] free. 

3.2 Stability analysis  

The Lyapunov function is considered as 
1

2
TV   . By 

differentiating V with respect to time, 
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Where 
1

1( ) n n
xK diag e k R

     and 

1

2( ) n n
yK diag e k R

     are positive definite diagonal 

matrices. 

The 0V   implies the stability in Lypunov sence. Now if 
0e   from equation (5.14) we have 

( 1)/2 ( 1)/22 2 ,x yV k V k V       (15) 

Where xk  and yk  represent the minimum eigenvalues of xK  

and yK  respectively, and 1/ 2 ( 1) / 2 1   . 

So according to the finite-time stability criterion (3), TSM (6) 
will be reached in the finite time i. e. the actual states track the 
desired trajectory in finite time. 

4. SIMULATION EXAMPLE 

4.1 For 2DOF robotic manipulator :  

In this paper a planar 2dof RR manipulator as taken from 
[6,7], is used to demonstrate the given control approach. The 
manipulator and the associated variables are shown in Figure 
1. And the dynamics of the two-link manipulator is given in 
appendix A. Let the reference trajectories are[6,7,11]: 
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and the initial states are selected as 

1 2 1(0) 0.4, (0) 1.8, 0q q q  
 and 2 0q 

. 

For experimental study it is assumed that an unknown load is 
carried by the robot as a part of the second link, then the 

parameters 2 2,m l  and 2I will change to 2 2 2 2,m m l l     

and 2 2I I  respectively. We also assume that the change 

2m  is as sine of 2q . Also let the variation of parameters 

change in the intervals. 

2 2
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m q
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  
  

  (17) 

A Band Limited White Noise with noise power [0.1] is added 
to the control signal as an external disturbance. In order to 
eliminate the chattering problem ,the boundary layer method is 
used i.e. The sgn( )s  is replaced by s ( / )at s   function, 

where   is boundary layer. 

4.1.1 Controller design parameters : The given continuous 
TSM controller design parameters as from (6), (10), (11) are 
chosen as below to achieve best controller performance : 

1 2(15,15), 11/ 9, (5,5)diag k k diag    
 

and 2 / 5  . 
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The simulation results are given in APPENDIX B. 

4.2 For PUMA 560 robotic manipulator :  

Also the above mentioned controller is used for trajectory 
tracking of PUMA-560 robot manipulator. 

For PUMA-560 robot dynamics and all physical parameters 
one can reffer [14,16]. 

PUMA 560 robot model is obtained from MATLAB software 
Robotic Toolbox [13]. For simulation purpose only 3 joints of 
PUMA 560 i.e. joint1, joint2 and joint3 are considered. The 
joint axes of joints 4, 5 and 6 intersect at a common point and 

4 5 6 0q q q   . 

The simulation is carried out for the trajectory demand as 
given below: 
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And 1 2 3(0) 0.4, (0) 1.8, (0) 1.8q q q    and 1 0q  , 

2 30, 0q q  
. 

To discuss the performance of the controller under 
uncertainties let the following changes are done in inertia 
matrix[14,16]. 

11 11

22 22

33 33

1.5;

3;

0.5;

a a

a a

a a

 
 
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   (19) 

A Band Limited White Noise with noise power [0.1] is added 
to the control signal as an external disturbance. 

4.2.1 Controller design parameters : The TSM controller 
design parameters as from (6),(10),(11) are chosen 
heuristically to achieve best controller performance as: 

1 2(21,9, 20), 11 / 9, (10, 20,10)diag k k diag      

and 2 / 5  . 

Simulation Results are given in APPENDIX C. 

From simulation results it is clear that the controller track the 
desired trajectory faithfully with very low rise time. Same is 
true for other results. Faster convergence of errors and sliding 
surfaces are clear from their respective plots. From control 
input plots it is seen that no chattering is evident in the figures. 
To discuss the controller performance, the output performance 
parameter integrated absolute error (IAE) and the input 
performance parameters total variation (TV) and control 

energy by using 2-norm are calculated from the results. Also 
the time of convergence of errors and sliding surfaces for 
different joints are calculated. The results are given in Table II 
and Table III. These results prove the superiority of the TSM 
controller in all aspects. 

Table I: TSMC Performance (for 2DOF Manipulator) 

Controller Performance 
Joint IAE TV 2-Norm Convergence 

of s (sec) 
Convergence 

of e (sec) 
Joint 
1 

3.1254  28.2 107.88 0.2 0.52 

Joint 
2 

3.5105  106.5 115.9 0.2 0.52 

 
Table II: TSMC Performance (for PUMA 560 Manipulator) 

Controller Performance 
Joint IAE TV 2-Norm Convergence 

of s (sec) 
Convergence 

of e (sec) 
Joint 
1 

3.653  97.7 96.5 0.6 0.8 

Joint 
2 

5.942  586.6 437.9 0.6 0.8 

Joint 
3 

4.415  183.2 190.5 0.6 0.8 

5. CONCLUSION 

A Finite Time Continuous Terminal Sliding Mode Controller 
for trajectory tracking of robotic manipulator is investigated in 
this paper where the terminal sliding manifold guarantees fast 
and finite time convergence. The TSM controller is 
successfully applied for 2 dof plannar RR manipulator and 
also for PUMA 560 manipulator systems which are affected 
by matched bounded uncertainities and external disturbances 
and guarantees finite time convergence of error ensuring 
satisfactory stabilization as well as tracking performances. All 
simulation results prove the effectiveness of the TSMC for 
robot handling and stability. The given control law is 
chattering free as well as singularity free. 

APPENDIX A  

The dynamic model of the two-link manipulator [9,10] can be 
given as follows 

11 12

21 22

( )
a a

M q
a a

 
  
   

   (20) 
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Fig. 1: Two link robotic manipulator with link masses  
m1 and m2 and link lengths l1 and l2 . 
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(21) 

Here 1 2( ) [ ( ), ( )]Tq t q t q t  is the angular position vector 

where 1( )q t
 and 2 ( )q t

are the angular positions of joints 1 
and 2. ( )M q  is the inertia matrix, ( , )C q q  is the centripetal 

Coriolis matrix, ( )G q  is the gravity vector and 1 2[ , ]T    

is the applied torque. Friction terms are ignored. Table I lists 
the physical parameters of the manipulator considered in the 
simulation study [6,7]. 

Table III: Physical Parameters of the 2-Link Robotic 
Manipulator[7] 

Symbol Definition Value 

1l  Length of the first link 1m 

2l  Length of the second link 0.85m 

1J  Moment of inertia of the D.C. 
motor 1 

5 Kg.m2

2J  Moment of inertia of the D.C. 
motor 2 

5 Kg.m2 

1m  Mass of the link 1 0.5 kg 

2m  Mass of the link 2 1.5 kg 

1m̂  Nominal Mass of the link 1 0.4 kg 

1m̂  Nominal Mass of the link 2 1.2 kg 

g  Gravitational constant 9.81 m/s2

 

APPENDIX B : RESULTS OF 2 DOF MANIPULATOR 
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APPENDIX C: RESULTS OF PUMA 560 
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